Buku Ajar Kecerdasan Buatan: Disertai Praktik Baik Pemanfaatannya

Authors

Dr. Heny Pratiwi, S.Kom., M.Pd., M.TI
STMIK Widya Cipta Dharma, Samarinda

Keywords:

Kecerdasan Buatan, Sistem Kecerdasan Buatan, Konsep Dasar Kecerdasan Buatan, Lingkungan Cerdas, Pilar-pilar Kecerdasan Buatan, Natural Language Processing (NLP), Jaringan Syaraf Tiruan, Fondasi Logika dalam Kecerdasan Buatan

Synopsis

Di era transformasi digital ini, kecerdasan buatan menjadi pilar utama revolusi teknologi yang mengubah paradigma kehidupan manusia. Buku ini akan menjelajahi konsep-konsep mendasar, aplikasi praktis, dan isu-isu terkini seputar kecerdasan buatan.
Bab pertama membuka tirai dengan menggali konsep dasar kecerdasan buatan, mengurai jenis-jenisnya, dan merinci studi terkait yang memperkaya pemahaman kita. Desain agen cerdas juga menjadi fokus, memandu pembaca melangkah lebih dalam ke dunia kecerdasan buatan. Pada Bab kedua, penulis membahas sistem dan ruang masalah kecerdasan buatan, memberikan wawasan mendalam tentang bagaimana sistem tersebut bekerja dalam menyelesaikan masalah serta contoh konkritnya. Bab ketiga memperluas wawasan dengan menggali konsep lingkungan cerdas, mengidentifikasi pilar-pilar kecerdasan buatan dalam konteks ini, dan menjelajahi tantangan etika yang muncul. Studi kasus dan aplikasi lingkungan cerdas serta visi pengembangan masa depan turut memperkaya diskusi.
Berlanjut ke Bab empat dan lima, pembaca diajak mengeksplorasi metode pelacakan buta dan heuristic, menggali kriteria-kriteria penggunaannya, dan memahami peran kunci dalam menyelesaikan masalah kecerdasan buatan. Bab enam hingga delapan membahas fondasi logika dalam kecerdasan buatan, mulai dari logika proposisional hingga logika urutan pertama. Penulis merinci aplikasi logika dalam skenario seperti Wumpus World, membantu pembaca memahami cara logika menjadi tulang punggung pengembangan kecerdasan buatan.

Perjalanan pengetahuan terus berlanjut dengan pembahasan representasi pengetahuan pada Bab sembilan, melibatkan berbagai metode seperti logika proposisional, predikat, modal, jaringan semantik, frame, dan ontologi. Sistem produksi dan jaringan semantik menjadi elemen kunci untuk mendukung representasi pengetahuan yang efektif. Bab sepuluh membawa pembaca ke dunia penalaran ketidakpastian, mengeksplorasi teorema Bayes sebagai alat utama dalam menghadapi ketidakpastian dalam kecerdasan buatan.
Dari sini, buku ini terus menggali topik menarik lainnya, termasuk jaringan syaraf tiruan, konsep game berbasis kecerdasan buatan, probabilitas, ketidakpastian, faktor keyakinan, hingga komputasi linguistik dan natural language processing (NLP). Setiap bab dirancang dengan hati-hati untuk memberikan pemahaman yang mendalam dan aplikatif tentang kecerdasan buatan.

Author Biography

Dr. Heny Pratiwi, S.Kom., M.Pd., M.TI, STMIK Widya Cipta Dharma, Samarinda

Dr. Heny Pratiwi, S.Kom., M.Pd., M.TI, seorang pengajar dengan jabatan fungsional lektor, aktif mengajar di STMIK Widya Cipta Dharma, Samarinda, lahir pada 13 Februari 1986 di Samarinda. Beliau dapat dihubungi pada alamat email di henypratiwi@wicida.ac.id dan henypratiwi@gmail.com. Alamat kampus berada di Jl. Prof. M. Yamin No. 25, Kelurahan Gunung Kelua, Kecamatan Samarinda Ulu, Kota Samarinda, Propinsi Kalimantan Timur, dengan Kode Pos 75123.
Sejak tahun 2008, Dr. Heny Pratiwi telah menjalani perjalanan pendidikan yang mengesankan. Dimulai dari meraih gelar Sarjana di STMIK Widya Cipta Dharma, Samarinda, Kalimantan Timur. Selanjutnya, ia melanjutkan pendidikan Magister di Universitas Mulawarman pada tahun 2011, dan gelar Doktor diraih di Universitas Negeri Jakarta dari tahun 2011 hingga 2015. Beliau juga meraih gelar Magister di Universitas Bina Nusantara dari tahun 2014 hingga 2017.
Dalam dunia akademis, Dr. Heny Pratiwi telah aktif sebagai seorang reviewer untuk berbagai konferensi dan jurnal seperti INCITEST, ICoABCD, APWiMob, IC2IE, IcoDSA, ICORIS, FRONTIERS, IJoICT, ICICyTA, TEKTRIKA, dan JIKA.

Dengan profil yang cemerlang, Dr. Heny Pratiwi juga telah menorehkan jejaknya dalam dunia penelitian. Beberapa topik penelitiannya mencakup pengembangan Unmanned Aerial Vehicle (UAV) untuk aplikasi pemetaan di lahan pertanian, penerapan teknik data mining pada kebutuhan kesehatan di Indonesia, penggunaan metode Simple Multi Attribute Rating Technique (SMART) dalam pemilihan produk obat, pemanfaatan teknik data mining dalam keamanan pangan nasional selama pandemi Covid-19, serta penelitian mengenai fungsi aktivasi sigmoid dalam pemilihan model terbaik pada jaringan saraf tiruan.
Dalam kiprahnya di dunia pendidikan, Dr. Heny Pratiwi juga aktif menulis buku, seperti "Buku Ajar Sistem Pendukung Keputusan," "Sistem Pakar: Buku Ajar," "Komitmen Mengajar," "Sistem Monitoring Lulusan Perguruan Tinggi," "Membuat Aplikasi menggunakan Database MySQL dan Java Netbeans 8.2," serta "Mahir Berlatih Visual Studio 2012: Dibuat Secara Bertahap - Lebih Mudah Dipahami."
Pengabdian kepada masyarakat juga menjadi bagian dari kontribusi Dr. Heny Pratiwi. Ia terlibat dalam proyek "Duta Kampus Merdeka" yang didanai oleh Kemendikbudristek RI pada tahun 2022, uji kompetensi keahlian Teknik Komputer dan Jaringan di SMK pada tahun yang sama, serta menjadi asesor Badan Akreditasi Nasional Sekolah Madrasah (BAN S/M) Pusat sejak 2018 hingga sekarang. Dr. Heny Pratiwi juga berperan sebagai juri animasi Lomba Gebyar TIK se-Kalimantan Timur yang diselenggarakan oleh Dinas Pendidikan dan Kebudayaan Kota Samarinda pada tahun 2022.

Selain itu, dalam ranah organisasi, beliau menjabat sebagai Ketua Bidang Penulisan Buku Ajar di Asosiasi Pendidikan Tinggi Informatika dan Komputer (APTIKOM) periode 2022-2026, Sekjen Indonesian Computer Electronics And Instrumentation Support Society (INDOCEISS) Kaltim periode 2021-2025, dan Ketua Perkumpulan Dosen Indonesia Semesta (DIS) Kaltim periode 2021-2024.
Dengan dedikasi yang luar biasa dalam dunia pendidikan, penelitian, dan pengabdian kepada masyarakat, Dr. Heny Pratiwi telah menjadi sosok yang menginspirasi dalam mengembangkan dan memajukan ilmu kecerdasan buatan di Indonesia. Referensi lebih lanjut mengenai kontribusinya dapat ditemukan di profil SINTA, Google Scholar, Scopus, dan ORCID.

References

Afrianto, Y., & Ginting, N. B. (2020). Implementasi Metode GREEDY BEST FIRST SEARCH untuk Penjadwalan Perkuliahan (Studi Kasus: Fakultas Teknik dan Sains Universitas Ibn Khaldun Bogor). PROSIDING LPPM UIKA BOGOR.

Aggarwal, C. C., & Aggarwal, C. C. (2021). First-Order Logic. Artificial Intelligence: A Textbook, 137–166.

Ahadian, E. R., Rizal, M., & Tuhuteru, E. (2020). Kriteria Pemilihan Supplier Material Semen Oleh Kontraktor Dengan Menggunakan Metode Analytical Hierarchy Process (AHP) Di Kota Ternate. Journal of Science and Engineering, 3(1).

Ahmed, N. J. (2021). The Knowledge and Attitudes of the Public toward the Clinical Use of Artificial Intelligence. Asian Journal of Pharmaceutics (AJP), 15(1). https://doi.org/10.22377/ajp.v15i1.3974

Alahakoon, D., Nawaratne, R., Xu, Y., Silva, D. D., Sivarajah, U., & Gupta, B. (2020). Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities. Information Systems Frontiers. https://doi.org/10.1007/s10796-020-10056-x

Alqahtani, H., Sarker, I. H., Kalim, A., Minhaz Hossain, S. Md., Ikhlaq, S., & Hossain, S. (2020). Cyber Intrusion Detection Using Machine Learning Classification Techniques. https://doi.org/10.1007/978-981-15-6648-6_10

Amien, M. (2023). Sejarah dan Perkembangan Teknik Natural Language Processing (NLP) Bahasa Indonesia: Tinjauan tentang sejarah, perkembangan teknologi, dan aplikasi NLP dalam bahasa Indonesia. arXiv Preprint arXiv:2304.02746.

Ardiaputra Taufik Fikri Muhammad, A., & Sawitri Ratna Dian, S. (2019). Hubungan antara Adversity Intelligence dan Kematangan Karir pada Mahasiswa Bidikmisi Tahun Ketiga di Fakultas Peternakan dan Pertanian Universitas Diponegoro [PhD Thesis]. Undip.

Armawi, A. (2013). Kajian Penguatan Komunitas Intelijen Daerah. Mimbar Hukum-Fakultas Hukum Universitas Gadjah Mada, 25(1), 68–75.

Artemov, S., & Dzhaparidze, G. (1990). Finite Kripke Models and Predicate Logics of Provability. Journal of Symbolic Logic. https://doi.org/10.2307/2274475

Bakhtiar, I. S., Samsudin, N. A., & Orłowski, A. (2023). The Transformation Revealed Concept of Smart City Application in Urban Planning. Iop Conference Series Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1217/1/012021

Bassai, H., & Lorek, W. (1994). Artificial neural networks for smart detection of digitally modulated signals. 1994 IEEE GLOBECOM. Communications: The Global Bridge, 2, 1029–1033.

Belardinelli, F., & der Hoek, W. van. (2016). A Semantical Analysis of Second-Order Propositional Modal Logic. Proceedings of the Aaai Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v30i1.10100

Ben-Ari, M., & Ben-Ari, M. (2012). Propositional logic: Formulas, models, tableaux. Mathematical Logic for Computer Science, 7–47.

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning. https://doi.org/10.1561/2200000006

Bielza Lozoya, M. C., Moral Callejón, S., & Salmerón Cerdán, A. (2015). Recent advances in probabilistic graphical models. International Journal of Intelligent Systems, 30(3), 207–208.

Bolc, L., & Cytowski, J. (1992). Search methods for artificial intelligence. https://api.semanticscholar.org/CorpusID:7102327

Borgwardt, S., & Morawska, B. (2012). Finding Finite Herbrand Models. https://doi.org/10.1007/978-3-642-28717-6_13

Brewka, G. (2005). Answer Sets and Qualitative Decision Making. Synthese. https://doi.org/10.1007/s11229-005-9084-7

Brotman, R., Burleson, W., Forlizzi, J., Heywood, W., & Lee, S. H. (2015). Building Change. https://doi.org/10.1145/2702123.2702602

Bryce, D. (2011). Wumpus world in introductory artificial intelligence. Journal of Computing Sciences in Colleges, 27(2), 58–65.

Bryndin, E. (2019). Collaboration of Intelligent Interoperable Agents via Smart Interface. International Journal on Data Science and Technology. https://doi.org/10.11648/j.ijdst.20190504.11

Bryndin, E. (2020). Implementation of Competencies by Smart Ethical Artificial Intelligence in Different Environments. Software Engineering. https://doi.org/10.11648/j.se.20200804.11

Bryndin, E. (2021a). Aspects of Implementation of Competencies by Smart Ethical Artificial Intelligence in Different Environments. J Eng App Sci Technol. https://doi.org/10.47363/jeast/2021(3)124

Bryndin, E. (2021b). Formation of International Ethical Digital Environment With Smart Artificial Intelligence. Automation Control and Intelligent Systems. https://doi.org/10.11648/j.acis.20210901.14

Buiten, M. C. (2019). Towards Intelligent Regulation of Artificial Intelligence. European Journal of Risk Regulation. https://doi.org/10.1017/err.2019.8

Buluc, A., & Madduri, K. (2011). Parallel Breadth-First Search on Distributed Memory Systems. https://doi.org/10.1145/2063384.2063471

Burkhart, M. C., & Ruiz, G. (2023). Neuroevolutionary representations for learning heterogeneous treatment effects. Journal of Computational Science, 71, 102054.

Cao, W., Wang, Q., Sbeih, A., & A. Shibly, F. H. (2020). Artificial Intelligence Based Efficient Smart Learning Framework for Education Platform. Inteligencia Artificial. https://doi.org/10.4114/intartif.vol23iss66pp112-123

Cao, Z. (2017). Development and Application of Artificial Intelligence. https://doi.org/10.2991/icmeit-17.2017.79

Cebrián, G., Martín, R. P., & Recalde, J. M. (2020). The Smart Classroom as a Means to the Development of ESD Methodologies. Sustainability. https://doi.org/10.3390/su12073010

Cenzer, D., Marek, V. W., & Remmel, J. B. (2015). Index Sets for Finite Normal Predicate Logic Programs With Function Symbols. https://doi.org/10.1007/978-3-319-27683-0_5

Chan, S. (Ed.). (2015). The Routledge encyclopedia of translation technology. Routledge.

Chen, L.-W., & Lu, Y.-R. (2022). Challenging Artificial Intelligence With Multiopponent and Multimovement Prediction for the Card Game Big2. Ieee Access. https://doi.org/10.1109/access.2022.3166932

Chen, X., & Li, Z. (2009). Battery-Aware Depth-First Search Routing for Streaming Data Transmissions in WSNs. https://doi.org/10.1109/wicom.2009.5302609

Cheng, J., Greiner, R., Kelly, J., Bell, D. A., & Liu, W. (2002). Learning Bayesian Networks From Data: An Information-Theory Based Approach. Artificial Intelligence. https://doi.org/10.1016/s0004-3702(02)00191-1

Chowdhary, K. (2020). Fundamentals of artificial intelligence. Springer.

Coeckelbergh, M. (2021). Time Machines: Artificial Intelligence, Process, and Narrative. Philosophy & Technology. https://doi.org/10.1007/s13347-021-00479-y

Cook, D. J. (2009). Multi-Agent Smart Environments. Journal of Ambient Intelligence and Smart Environments. https://doi.org/10.3233/ais-2009-0007

Cooper, G. F., & Herskovits, E. H. (1992). A Bayesian Method for the Induction of Probabilistic Networks From Data. Machine Learning. https://doi.org/10.1007/bf00994110

Creignou, N., Ktari, R., & Papini, O. (2022). Belief Contraction and Erasure in Fragments of Propositional Logic. Journal of Logic and Computation. https://doi.org/10.1093/logcom/exac005

Dabideen, S., & Garcia-Luna-Aceves, J. J. (2009). OWL: Towards Scalable Routing in MANETs Using Depth-First Search on Demand. https://doi.org/10.1109/mobhoc.2009.5336953

Dabideen, S., & Garcia-Luna-Aceves, J. J. (2011). Efficient Routing in MANETs Using Ordered Walks. Wireless Networks. https://doi.org/10.1007/s11276-011-0339-6

Dash, B., & Sharma, P. K. (2022). Role of Artificial Intelligence in Smart Cities for Information Gathering and Dissemination (A Review). Academic Journal of Research and Scientific Publishing. https://doi.org/10.52132/ajrsp.e.2022.39.4

Davenport, T. H., Guha, A., Grewal, D., & Breßgott, T. (2019). How Artificial Intelligence Will Change the Future of Marketing. Journal of the Academy of Marketing Science. https://doi.org/10.1007/s11747-019-00696-0

David, L., & Alan, K. M. (2010). Artificial Intelligence: Foundations of Computational Agents. Choice Reviews Online. https://doi.org/10.5860/choice.48-2130

Deftya, Z. P., & Sari, S. (2020). Penerapan Sistem Informasi Pengelola Rantai Suplai (SI-PRS) dalam Mendukung Kegiatan Disektor Hulu Migas. Jurnal Teknik Industri: Jurnal Hasil Penelitian Dan Karya Ilmiah Dalam Bidang Teknik Industri, 6(2), 127–132.

Dergunova, Y., Aubakirova, R. Z., Yelmuratova, B. Z., Gulmira, T. M., Yuzikovna, P. N., & Antikeyeva, S. (2022). Artificial Intelligence Awareness Levels of Students. International Journal of Emerging Technologies in Learning (Ijet). https://doi.org/10.3991/ijet.v17i18.32195

Dewi, A. B. C. (2018). Korelasi antara Kecerdasan Linguistik dengan Kompetensi Pengetahuan Bahasa Indonesia Siswa Kelas V SD Gugus I Gusti Ngurah Rai Denpasar Barat Tahun Pelajaran 2017/2018. Journal for Lesson and Learning Studies, 1(1), 33–42.

Dharna, A., Togelius, J., & Soros, L. B. (2020). Co-Generation of Game Levels and Game-Playing Agents. Proceedings of the Aaai Conference on Artificial Intelligence and Interactive Digital Entertainment. https://doi.org/10.1609/aiide.v16i1.7431

Diem, M., Hänsch, W., & Naumann, D. (2006). Artificial Neural Networks as Supervised Techniques for FT‐IR Microspectroscopic Imaging. Journal of Chemometrics. https://doi.org/10.1002/cem.993

Ding, J., Qammar, A., Zhang, Z., Karim, A., & Ning, H. (2022). Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions. Energies. https://doi.org/10.3390/en15186799

Dishkant, H. (1986). About finite predicate logic. Studia Logica, 45, 405–414.

Durgut, M. S. (2017). Hybrid Artificial Cooperative Search—Crow Search Algorithm for Optimization of a Counter Flow Wet Cooling Tower. International Journal of Intelligent Systems and Applications in Engineering. https://doi.org/10.18201/ijisae.2017531425

Dyba, M., & Novák, V. (2013). First-order EQ-logic. 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13), 240–246.

Ebrahim, M., Hafid, A., & Elie, E. (2022). Blockchain as Privacy and Security Solution for Smart Environments: A Survey. https://doi.org/10.48550/arxiv.2203.08901

Eckhoff, D., & Wagner, I. (2018). Privacy in the Smart City—Applications, Technologies, Challenges, and Solutions. Ieee Communications Surveys & Tutorials. https://doi.org/10.1109/comst.2017.2748998

Efrianty, F. N., Harsiti, H., & Nurhadiyan, M. T. (2018). Implementasi Metode Ishihara pada Tes Buta Warna (Colour Deficiency) di Klinik Amanda-Anyer. JSiI (Jurnal Sistem Informasi), 5(2).

Elbagoury, B. M., Vladareanu, L., Vladareanu, V., Salem, A., Travediu, A.-M., & Roushdy, M. (2023). A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform. Sensors. https://doi.org/10.3390/s23073500

Everitt, T., Lea, G., & Hutter, M. (2018). AGI Safety Literature Review. https://doi.org/10.24963/ijcai.2018/768

Fahimirad, M., & Kotamjani, S. S. (2018). A Review on Application of Artificial Intelligence in Teaching and Learning in Educational Contexts. International Journal of Learning and Development. https://doi.org/10.5296/ijld.v8i4.14057

Fatkhurrozi, B. (2013). Natural language processing (NLP).

Feng, Y., Qiu, L., & Sun, B. (2021). A Measurement Framework of Crowd Intelligence. International Journal of Crowd Science. https://doi.org/10.1108/ijcs-09-2020-0015

Fernández-Montes, A., Ortega Ramírez, J. A., Sánchez-Venzalá, J. I., & Abril, L. G. (2014). Software Reference Architecture for Smart Environments: Perception. Computer Standards & Interfaces. https://doi.org/10.1016/j.csi.2014.02.004

Fitriyani, Y. (2018). Sistem Akuntansi Pengeluaran Kas Pada CV. Citra Kencana Banjarmasin. Jurnal Riset Akuntansi Politala, 1(1), 1–5.

Fulton, R. M., Fulton, D., & Kaplan, S. (2022). The Framework of Artificial Intelligence (FAI): Driving Triggers, State of the Art Over Time and Industry Adoption Influencers. International Journal of Artificial Intelligence & Applications. https://doi.org/10.5121/ijaia.2022.13307

Gamez, J. A., & Salmeron, A. (2003). Probabilistic graphical models. International Journal of Intelligent Systems, 18(2), 149–151.

Gao, C., Wang, F., Hu, X., & Martinez, J. (2023). Research on Sustainable Design of Smart Cities Based on the Internet of Things and Ecosystems. Sustainability. https://doi.org/10.3390/su15086546

García‐Magariño, I., Rajarajan, M., & Lloret, J. (2019). Human-Centric AI for Trustworthy IoT Systems With Explainable Multilayer Perceptrons. Ieee Access. https://doi.org/10.1109/access.2019.2937521

Gerges, F., Zouein, G., & Azar, D. (2018). Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, 19–22. https://doi.org/10.1145/3194452.3194463

Ghazal, R., Malik, A. K., Qadeer, N., Raza, B., Shahid, A. R., & Alquhayz, H. (2020). Intelligent Role-Based Access Control Model and Framework Using Semantic Business Roles in Multi-Domain Environments. Ieee Access. https://doi.org/10.1109/access.2020.2965333

Gill, R., & Dubey, T. K. (2022). Shortest Path Computation Technique in WSN for IOT Applications. https://doi.org/10.21203/rs.3.rs-1030832/v1

Gomes, L., Sousa, F., Pinto, T., & Vale, Z. (2019). A Residential House Comparative Case Study Using Market Available Smart Plugs and EnAPlugs With Shared Knowledge. Energies. https://doi.org/10.3390/en12091647

Görnemann, S. (1971). A logic stronger than intuitionism1. The Journal of Symbolic Logic, 36(2), 249–261.

Grosan, C., & Abraham, A. (2011). Intelligent systems: A modern approach. Springer-Verlag.

Hajjaji, Y., Boulila, W., Farah, I. R., Romdhani, I., & Hussain, A. (2021). Big Data and IoT-based Applications in Smart Environments: A systematic Review. Computer Science Review. https://doi.org/10.1016/j.cosrev.2020.100318

Hamid, W. & others. (2018). Jaringan Ulama Awal Abad XX Kabupaten Sidrap dan Parepare. PUSAKA, 6(2), 171–182.

Han, S. (2023). The Contributions of Information and Communications Technology on the Sustainable Development of Artificial Intelligence in the Medical Field. Journal of Innovation and Development. https://doi.org/10.54097/jid.v2i2.6394

Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., & Feely, S. M. (2020). Artificial Intelligence (AI) or Intelligence Augmentation (IA): What Is the Future? Ai. https://doi.org/10.3390/ai1020008

Heartfield, R., Loukas, G., Budimir, S., Bezemskij, A., Fontaine, J., Filippoupolitis, A., & Roesch, E. B. (2018). A Taxonomy of Cyber-Physical Threats and Impact in the Smart Home. Computers & Security. https://doi.org/10.1016/j.cose.2018.07.011

Hernández, M. G. (2014). Mathematical Modeling Using Semantic Networks for Teaching. European Journal of Educational Sciences. https://doi.org/10.19044/ejes.v1no3a6

Hinsen, S., Hofmann, P., Jöhnk, J., & Urbach, N. (2022). How Can Organizations Design Purposeful Human-Ai Interactions: A Practical Perspective From Existing Use Cases and Interviews. https://doi.org/10.24251/hicss.2022.024

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep Belief Nets. Neural Computation. https://doi.org/10.1162/neco.2006.18.7.1527

Https://plato.stanford.edu/entries/logic-fuzzy/. (n.d.).

Huang, Y., Xue, X., & Jiang, C. (2020). Semantic Integration of Sensor Knowledge on Artificial Internet of Things. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2020/8815001

Ikrissi, G., & Mazri, T. (2020). A Study of Smart Campus Environment and Its Security Attacks. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-archives-xliv-4-w3-2020-255-2020

Illing, B., Gerstner, W., & Brea, J. (2019). Biologically Plausible Deep Learning—But How Far Can We Go With Shallow Networks? Neural Networks. https://doi.org/10.1016/j.neunet.2019.06.001

Ivanov, O., & Gavrilac, M. (2014). Multilayer Perceptron Architecture Optimization for Peak Load Estimation. https://doi.org/10.1109/neurel.2014.7011462

Jakkula, V., Cook, D. J., & Jain, G. (2007). Prediction Models for a Smart Home Based Health Care System. https://doi.org/10.1109/ainaw.2007.292

Jalali, M., Mustapha, N., Sulaiman, M. N. B., & Mamat, A. (2009). OPWUMP: an architecture for online predicting in WUM-based personalization system. Advances in Computer Science and Engineering: 13th International CSI Computer Conference, CSICC 2008 Kish Island, Iran, March 9-11, 2008 Revised Selected Papers, 838–841.

Ji, K., & Kwon, Y. (2023). New Spam Filtering Method With Hadoop Tuning-Based MapReduce Na飗e Bayes. Computer Systems Science and Engineering. https://doi.org/10.32604/csse.2023.031270

Jobin, A., & Ienca, M. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence. https://doi.org/10.1038/s42256-019-0088-2

Kammer, F., & Sajenko, A. (2019). Linear-Time in-Place DFS and BFS On the Word RAM. https://doi.org/10.1007/978-3-030-17402-6_24

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004

Kausar, K., Cepriadi, C., & Hidayanti, N. U. (2023). ANALISIS HUBUNGAN FAKTOR-FAKTOR PENYEBAB KONFLIK DENGAN INTENSITAS KONFLIK EMERGING DALAM KONFLIK LAHAN PERKEBUNAN ANTARA MASYARAKAT DESA KOTO AMAN DENGAN PT. SEKAR BUMI ALAM LESTARI. Jurnal Ilmiah Mahasiswa Agroinfo Galuh, 10(1), 504–514.

Kerschberg, L., & Ras, Z. (2014). Special issue on future directions for intelligent information systems. Journal of Intelligent Information Systems, 43, 409–410.

Khairina, D. M., Maharani, S., & Hatta, H. R. (2018). Sistem Informasi Manajemen Ruang (Simeru) Kelas (Studi Kasus: FKTI Universitas Mulawarman). Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 13(1), 30–32.

Khalifa, A., Preuss, M., & Togelius, J. (2017). Multi-Objective Adaptation of a Parameterized GVGAI Agent Towards Several Games. https://doi.org/10.1007/978-3-319-54157-0_25

Khan, R. Z., & Allamy, H. (2013). Training Algorithms for Supervised Machine Learning: Comparative Study. International Journal of Management & Information Technology. https://doi.org/10.24297/ijmit.v4i3.773

Khan, S. (2019). Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs. Acm Transactions on Parallel Computing. https://doi.org/10.1145/3364212

Kim, Y., Hwang, H.-S., & Chang, H. (2015). Smart IT Management Evaluation in Intelligent Environment Computing. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2015/694808

Kinnula, M., Iivari, N., Sharma, S., Eden, G., Turunen, M., Achuthan, K., Nedungadi, P., Avellan, T., Thankachan, B., & Tulaskar, R. (2021). Researchers’ Toolbox for the Future: Understanding and Designing Accessible and Inclusive Artificial Intelligence (AIAI). https://doi.org/10.1145/3464327.3464965

Kopec, D., Marsland, T. A., & Marsland, K. (2001). Uninformed Search Methods 1. 1 Search Strategies. https://api.semanticscholar.org/CorpusID:47264328

Kumbhar, M., Vishwakarma, V., & Jain, R. (2023). A Logical Agent Approach to Solving the Wumpus World Problem: An Analysis of Game Trees. 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), 1, 1839–1844.

Kunanusont, K., Lucas, S. M., & Perez-Liebana, D. (2017). General Video Game AI: Learning From Screen Capture. https://doi.org/10.1109/cec.2017.7969556

Kurniawan, D., & Hasanah, M. (2022). Hubungan antara Linguistic Intelligence terhadap Self-Confident Siswa. Ummul Qura Jurnal Institut Pesantren Sunan Drajat (INSUD) Lamongan, 17(2), 54–66.

Kutty, G., Moser, L. E., Melliar-Smith, P., Dillon, L. K., & Ramakrishna, Y. (1994). First-order future interval logic. Temporal Logic: First International Conference, ICTL’94 Bonn, Germany, July 11–14, 1994 Proceedings, 195–209.

Langseth, H., & Nielsen, T. D. (2006). Classification Using Hierarchical Naïve Bayes Models. Machine Learning. https://doi.org/10.1007/s10994-006-6136-2

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2011). Unsupervised Learning of Hierarchical Representations With Convolutional Deep Belief Networks. Communications of the Acm. https://doi.org/10.1145/2001269.2001295

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006). The DLV System for Knowledge Representation and Reasoning. Acm Transactions on Computational Logic. https://doi.org/10.1145/1149114.1149117

Lesmana, A. (2022). PENGARUH FAKTOR INTRINSIK DAN EKSTRINSIK TERHADAP NIAT BERWIRAUSAHA MASYARAKAT KOTA PASIR PENGARAIAN: THE INFLUENCE OF INTRINSIC AND EXTRINSIC FACTORS ON ENTREPRENEURSHIP INTERESTS OF THE COMMUNITY OF PASIR PENGARAIAN CITY. Hirarki: Jurnal Ilmiah Manajemen Dan Bisnis, 4(1), 503–515.

Li, C. M., Liu, X. L., Dai, Z., & Wu, P. (2019). Understanding Smart City: A Shareable Framework. The Case of China. Isprs Annals of the Photogrammetry Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-annals-iv-4-w9-71-2019

Li, Y. (2019). Impact of Artificial Intelligence on Creative Digital Content Production. Journal of Digital Art Engineering and Multimedia. https://doi.org/10.29056/idaem.2019.12.05

Liang, R.-H., & Hsu, Y.-Y. (1995). A hybrid artificial neural network—Differential dynamic programming approach for short-term hydro scheduling. Electric Power Systems Research, 33(2), 77–86.

Liesnaningsih, L., & Taufiq, R. (2021). SISTEM INFORMASI MONITORING PENGADUAN DAN KELUHAN PELANGGAN PADA PT. EGA TEKELINDO PRIMA BERBASIS WEB. JIKA (Jurnal Informatika), 5(3), 276–281.

Lin, H., & Bergmann, N. W. (2016). IoT Privacy and Security Challenges for Smart Home Environments. Information. https://doi.org/10.3390/info7030044

Linckels, S., Meinel, C., Linckels, S., & Meinel, C. (2011). Natural language processing. E-Librarian Service: User-Friendly Semantic Search in Digital Libraries, 61–79.

Liu, C. (2022). Artificial Intelligence Interactive Design System Based on Digital Multimedia Technology. Advances in Multimedia. https://doi.org/10.1155/2022/4679066

Liu, F., Zhang, H., & Zhu, J. (2008). Ontology-Based Intelligent Interactive Electronic Technology Manual: An Overview of the OIIETM Project. https://doi.org/10.1109/iccit.2008.275

Liu, N., Shapira, P., & Yue, X. (2021). Tracking Developments in Artificial Intelligence Research: Constructing and Applying a New Search Strategy. Scientometrics. https://doi.org/10.1007/s11192-021-03868-4

Lutviana, L., Pratiwi, I. A., & Purbasari, I. (2021). Penggunaan Gawai pada Pembelajaran Daring terhadap Motivasi Belajar Anak di Sekolah Dasar. EDUKATIF: JURNAL ILMU PENDIDIKAN, 3(5), 3181–3188.

Ma, R., & Xu, J. (2023). Construction of Smart Education Evaluation System: A Case Study of International Chinese Language Education. International Journal of Information and Education Technology. https://doi.org/10.18178/ijiet.2023.13.2.1805

Madani, K., Chebira, A., Rybnik, M., & Bouyoucef, E.-K. (2005). Tree-Like Multiple Neural Network Models Generator With a Complexity Estimation Based Decomposer. https://doi.org/10.1109/idaacs.2005.282942

Mahsyar, A., Parawangi, A., & others. (2020). KOORDINASI ANTAR SKPD DALAM MENANGGULANGI PEDAGANG KAKI LIMA YANG MENGGANGGU LALU LINTAS DI KOTA MAKASSAR. JPPM: Journal of Public Policy and Management, 2(1), 11–19.

Manika, P. (2021). Knowledge Representation in Business Process Automation Systems. https://doi.org/10.33422/3rd.ictle.2021.02.136

Mankolli, E., & Guliashki, V. (2020). Machine learning and natural language processing: Review of models and optimization problems. ICT Innovations 2020. Machine Learning and Applications: 12th International Conference, ICT Innovations 2020, Skopje, North Macedonia, September 24–26, 2020, Proceedings 12, 71–86.

Màrquez Villodre, L. (2000). Machine learning and natural language processing.

Mathada Kumar, A. P., & Vijaya, S. M. (2023). ANNHRPAA Based Deep Learning Image Processing for Pneumonia Detection. https://doi.org/10.5772/intechopen.106640

Mehlhorn, K., Näher, S., & Sanders, P. (2017). Engineering DFS-Based Graph Algorithms. https://doi.org/10.48550/arxiv.1703.10023

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Mohamadou, Y., Halidou, A., & Kapen, P. T. (2020). A Review of Mathematical Modeling, Artificial Intelligence and Datasets Used in the Study, Prediction and Management of COVID-19. Applied Intelligence. https://doi.org/10.1007/s10489-020-01770-9

Mohammadi, M., Al-Fuqaha, A., Guizani, M., & Oh, J.-S. (2018). Semisupervised Deep Reinforcement Learning in Support of IoT and Smart City Services. Ieee Internet of Things Journal. https://doi.org/10.1109/jiot.2017.2712560

Mohammed, E. Z., & Ali, H. K. (2013). Hardware Implementation of Artificial Neural Network Using Field Programmable Gate Array. International Journal of Computer Theory and Engineering. https://doi.org/10.7763/ijcte.2013.v5.795

Moraitis, T., Sebastian, A., & Eleftheriou, E. (2018). Spiking Neural Networks Enable Two-Dimensional Neurons and Unsupervised Multi-Timescale Learning. https://doi.org/10.1109/ijcnn.2018.8489218

Nadai, L., Felde, I., Ardabili, S. F., Gundoshmian, T. M., Pintér, G., & Mosavi, A. (2020). Performance Analysis of Combine Harvester Using Hybrid Model of Artificial Neural Networks Particle Swarm Optimization. https://doi.org/10.20944/preprints202002.0336.v1

Nanaumi, S., Wagatsuma, K., Gao, H., Goto, Y., & Cheng, J. (2015). Development of a Bidirectional Transformation Supporting Tool for Formalization With Logical Formulas and Its Application. https://doi.org/10.1007/978-3-662-47487-7_1

Neirotti, P., Marco, A. D., Cagliano, A. C., Mangano, G., & Scorrano, F. (2014). Current Trends in Smart City Initiatives: Some Stylised Facts. Cities. https://doi.org/10.1016/j.cities.2013.12.010

Nguyen, G., Nguyen, N. P., & Huong Giang, N. T. (2022). Situation and Proposals for Implementing Artificial Intelligence-Based Instructional Technology in Vietnamese Secondary Schools. International Journal of Emerging Technologies in Learning (Ijet). https://doi.org/10.3991/ijet.v17i18.31503

Nielsen, J. S., & Sørensen, J. D. (2017). Computational Framework for Risk-Based Planning of Inspections, Maintenance and Condition Monitoring Using Discrete Bayesian Networks. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2017.1387155

Nikolajeva, A. (2021). Use of Artificial Intelligence Technologies in E-Commerce and Business Processes. https://doi.org/10.33965/is2021_202103r036

Nitti, M., Giusto, D. D., Zanda, S., Francesco, M. D., Casari, C., Clemente, M. L., Lai, C., Milesi, C., & Popescu, V. (2018). Using IoT for Accessible Tourism in Smart Cities. https://doi.org/10.5772/intechopen.77057

Nooringsih, K., & Susanti, R. (2022). Implementation of Smart City Concept for Sustainable Development in Semarang Old Town Area. Iop Conference Series Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1082/1/012034

Oniśko, A., & Drużdżel, M. J. (2013). Impact of Precision of Bayesian Network Parameters on Accuracy of Medical Diagnostic Systems. Artificial Intelligence in Medicine. https://doi.org/10.1016/j.artmed.2013.01.004

Parise, G., & Lombardi, M. (2022). Ethics and Eco-Design for Complex Uses of Energy: What We Need for a Sustainable Future. Ieee Industry Applications Magazine. https://doi.org/10.1109/mias.2022.3160998

Park, J., Lee, D., & Yeom, K. (2021). Content Service Platform for Providing User-Centric Content in Smart Environments. Advances in Civil Engineering. https://doi.org/10.1155/2021/9171046

Pearl, J., & Korf, R. E. (1987). Search techniques. Annual Review of Computer Science, 2(1), 451–467.

Pelletier, F. J. (2000). Petr Hájek. Metamathematics of fuzzy logic. Trends in logic, vol. 4. Kluwer Academic Publishers, Dordrecht, Boston, and London, 1998, viii 297 pp. Bulletin of Symbolic Logic, 6(3), 342–346. https://doi.org/10.2307/421060

Petkov, A. (1987). Propositional Dynamic Logic in Two-and More Dimensions. Mathematical Logic and Its Applications, 323–329.

Ping, W. L., & Phuan, A. T. L. (2005). A novel hybrid learning scheme for pattern recognition. Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., 4, 2099–2104.

Pirzada, P., Wilde, A., Doherty, G. H., & Harris-Birtill, D. (2021). Ethics and Acceptance of Smart Homes for Older Adults. Informatics for Health and Social Care. https://doi.org/10.1080/17538157.2021.1923500

Priyono, M. Y. R., Partono, P., & Kusuma, F. I. (2021). Pengaruh pemahaman tentang kompetensi profesional terhadap kinerja guru di SMKN 12 Malang. Jurnal Teknik Otomotif: Kajian Keilmuan Dan Pengajaran, 5(2), 59–65.

Rahardja, U., Maimunah, H., & Hidayati, H. (2007). Metode Pencarian Data dengan Menggunakan Intelligence Auto Find System (IAFS). Creative Communication and Innovative Technology Journal, 1(1), 1–12.

Rahmad, R. S. U. (2021). Rancang dan Bangun Aplikasi Chatbot Menggunakan Pendekatan Natural Language Processing (NLP) Pada Pusat Pelatihan Inatechno. Indonesian Journal of Computer Science, 10(2).

Raja, S. P., Rajkumar, T. D., & Sowndariya, K. (2017). Artificial-Intelligence-Based Heuristic Searching Tools and Knowledge Representation to Solve Cryptography Problems, Puzzles, Vehicle Detection and Path Finding. International Journal of Signal and Imaging Systems Engineering. https://doi.org/10.1504/ijsise.2017.10005424

Ramadhan, M. A., Bella, C., Mustakim, M., Handinata, R., & Niam, A. (2018). Implementasi Metode SMARTER Untuk Rekomendasi Pemilihan Lokasi Pembangunan Perumahan di Pekanbaru. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 4(1), 42–47.

Rani, S. F., & Sriwahyuni, T. (2021). Rancang Bangun Aplikasi Buta Warna Metode Ishihara Berbasis Android (Studi Kasus: Di Puskesmas Sungai Geringging). Voteteknika (Vocational Teknik Elektronika Dan Informatika), 9(1), 81–91.

Ranjbar, M., & Marburg, S. (2013). Fast Vibroacoustic Optimization of Mechanical Structures Using Artificial Neural Networks. International Journal of Mechanical Engineering and Applications. https://doi.org/10.11648/j.ijmea.20130103.11

Reverberi, P., & Talamo, M. (1999). A probabilistic model for interactive decision-making. Decision Support Systems, 25(4), 289–308.

Robles, V., Larrañaga, P., Peña, J. M., Menasalvas, E., & Pérez, M. S. (2003). Interval Estimation Naïve Bayes. https://doi.org/10.1007/978-3-540-45231-7_14

Şahin, M. (2010). Vibration-based Damage Identification in Sandwich Beams using Artificial Neural Networks.

Salsabila, D. S., & Tanamal, R. (2020). Design of Expert System for Digestive Diseases Identification Using Naïve Bayes Methodology for iOS-Based Application. Inform Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi. https://doi.org/10.25139/inform.v0i1.2771

Saputra, A. Y., & Primadasa, Y. (2019). Penerapan Metode MOORA Dalam Pemilihan Sekolah Dasar. Sistemasi: Jurnal Sistem Informasi, 8(2), 305–312.

Saraswati, N. M. & others. (2021). Artificial Inteligence Dalam Apilkasi Chatbot Sebagai Helpdesk Obyek Wisata Dengan Permodelan Natural Language Processing (Studi Kasus: Kabupaten Cilacap). Smart Comp: Jurnalnya Orang Pintar Komputer, 10(1), 7–14.

Schwoon, S., & Esparza, J. (2005). A Note on on-the-Fly Verification Algorithms. https://doi.org/10.1007/978-3-540-31980-1_12

Selviani, D. (2020). Pengaruh Penerapan Anggaran Berbasis Kinerja Terhadap Akuntabilitas Kinerja Instansi Pemerintah Kota Cimahi. Land Journal, 1(2), 117–124.

Setyaningrum, R. K., Febrianti, R., & Santoso, S. (2021). Studi Perkembangan Sekolah Khusus Olahraga Disabilitas (SKOD) Indonesia Tahun 2019-2020. Jurnal Pendidikan Kesehatan Rekreasi, 7(1), 30–37.

Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5g-IoT Scenarios. Ieee Access. https://doi.org/10.1109/access.2020.2970118

Shah, S., & Meganathan, S. (2020). Machine Learning Approach for Power Consumption Model Based on Monsoon Data for Smart Cities Applications. Computational Intelligence. https://doi.org/10.1111/coin.12368

Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: Are we there yet? Heart.

Shan, L., Zeng, H., Liu, Y., Zhang, X., Li, E., Yu, R., Hu, Y., Guo, T., & Chen, H. (2022). Artificial Tactile Sensing System With Photoelectric Output for High Accuracy Haptic Texture Recognition and Parallel Information Processing. Nano Letters. https://doi.org/10.1021/acs.nanolett.2c02995

Shan, S., & Yu, L. (2021). Blended Teaching Design of College Students’ Mental Health Education Course Based on Artificial Intelligence Flipped Class. Mathematical Problems in Engineering. https://doi.org/10.1155/2021/6679732

Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014). Learning Semantic Representations Using Convolutional Neural Networks for Web Search. https://doi.org/10.1145/2567948.2577348

Silva, B. N., Khan, M., & Han, K. (2020). Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities. Sustainability. https://doi.org/10.3390/su12145561

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., den Driessche, G. van, Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T. P., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the Game of Go With Deep Neural Networks and Tree Search. Nature. https://doi.org/10.1038/nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L. R., Lai, M., Bolton, A., Chen, Y., Lillicrap, T. P., Fan, H., Sifre, L., den Driessche, G. van, Graepel, T., & Hassabis, D. (2017). Mastering the Game of Go Without Human Knowledge. Nature. https://doi.org/10.1038/nature24270

Siwach, G., & Li, C. (2023). Enhancing Human Cobot Interaction using Natural Language Processing. 2023 IEEE 4th International Multidisciplinary Conference on Engineering Technology (IMCET), 21–26.

Skvortsov, D. (1995). On the predicate logics of finite Kripke frames. Studia Logica, 54, 79–88.

Solanki, S., Parmar, P., Shukla, P., Patel, D., Modi, Mr. N., & Degadwala, Dr. S. (2018). A Review on Two Water Jugs Problem via an Algorithmic Approach. International Journal of Scientific Research in Science Engineering and Technology. https://doi.org/10.32628/ci021

Soto, M. G., & Adeli, H. (2017). Multi-Agent Replicator Controller for Sustainable Vibration Control of Smart Structures. Journal of Vibroengineering. https://doi.org/10.21595/jve.2017.18924

Spampinato, D. G., Sridhar, U., & Low, T. M. (2019). Linear Algebraic Depth-First Search. https://doi.org/10.1145/3315454.3329962

Spiliopoulou, M., & Faulstich, L. C. (1998). WUM: a tool for web utilization analysis. International Workshop on the World Wide Web and Databases, 184–203.

Spitmaan, M., & Leong, A. C. (2019). Theory of Intelligent Act. https://doi.org/10.31235/osf.io/g78mf

Sukarno, M., & Gunawan Putri, S. A. (2022). Smart Environment Planning for Smart City Based on Regional Medium-Term Development Plan Surabaya City 2021-2026. Iop Conference Series Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1105/1/012023

Suryadi, S. (2014). Perancangan Aplikasi Pencarian File Dengan Menggunakan Metode Best First Search. Informatika, 2(2), 79–93.

Suryani, D., & Amalia, E. L. (2017). Aplikasi chatbot objek wisata jawa timur berbasis aiml. Smartics Journal, 3(2).

Syaiful Bahri, S. & others. (2019). Implemetasi Metode AHP (Analitycal Hierarchy Process) Dalam Penentuan Tempat Wisata Agro (Studi Kasus Di Kecamatan Pegantenan, Pamekasan, Madura). Jurnal Teknologi Dan Rekayasa Sistem Komputer (TEKNOKOM), 2(1), 17–22.

Tarjan, R. E. (1972). Depth-First Search and Linear Graph Algorithms. Siam Journal on Computing. https://doi.org/10.1137/0201010

Tarwana, W., Rustandi, A., & Ijudin, M. (2022). PENDAMPINGAN DAN PELATIHAN KOMPETENSI TUTUR BAHASA INGGRIS SANTRI SEBUAH PONDOK PESANTREN DALAM MEMPROMOSIKAN ARTIFICIAL IN℡LIGENCE SEBAGAI MEDIA PEMBELAJARAN. Abdimas Galuh, 4(2), 1071–1082.

Thongprasri, P. (2017). Prediction of Excitation Angles for a Switched Reluctance Generator Using Artificial Neural Network. International Journal of Science and Engineering Applications. https://doi.org/10.7753/ijsea0610.1001

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Machine Learning. https://doi.org/10.1007/s10994-006-6889-7

Tzeremes, V., & Gomaa, H. (2016). A Multi-Platform End User Software Product Line Meta-Model for Smart Environments. https://doi.org/10.5220/0006003802900297

Tzeremes, V., & Gomaa, H. (2018). Applying End User Software Product Line Engineering for Smart Spaces. https://doi.org/10.24251/hicss.2018.721

Ukpong, E. G., Udoh, I. I., & Essien, I. T. (2019). Artificial Intelligence: Opportunities, Issues and Applications in Banking, Accounting, and Auditing in Nigeria. Asian Journal of Economics Business and Accounting. https://doi.org/10.9734/ajeba/2019/v10i130099

Ulum, M. C. (2018). Public Service: Tinjauan Teoretis dan Isu-Isu Strategis Pelayanan Publik. Universitas Brawijaya Press.

van Bakel, S., & de’Liguoro, U. (2003). Logical Semantics for the First Order ς-Calculus. Theoretical Computer Science: 8th Italian Conference, ICTCS 2003, Bertinoro, Italy, October 13-15, 2003. Proceedings 8, 202–215.

Vanitha, K., K.Yasudha, Venkatesh, D., & K.N.Sowjanya. (2013). Semantic E-Learn Services and Intelligent Systems Using Web Ontology. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2013.040121

Veselovsky, M. Y., Izmailova, M. A., & Trifonov, V. A. (2021). Intellectual Governance in the Digital Economy of Russia. https://doi.org/10.2991/aebmr.k.210222.057

Viswanathan, M. (2018). First Order Logic.

Vodák, J., Šulyová, D., & Kubina, M. (2021). Advanced Technologies and Their Use in Smart City Management. Sustainability. https://doi.org/10.3390/su13105746

Wan, J., Li, X., Dai, H.-N., Kusiak, A., Martínez-García, M., & Li, D. (2021). Artificial-Intelligence-Driven Customized Manufacturing Factory: Key Technologies, Applications, and Challenges. Proceedings of the Ieee. https://doi.org/10.1109/jproc.2020.3034808

Wang, H., & Yeung, D. (2020). A Survey on Bayesian Deep Learning. Acm Computing Surveys. https://doi.org/10.1145/3409383

Wang, J. (2009). Encyclopedia of Data Warehousing and Mining Second Edition.

Wang, X. (2020). Research on Application of Artificial Intelligence in VR Games. https://doi.org/10.3233/faia200704

Wei, J., Chen, Y., Yu, Y., & Chen, Y. (2019). Optimal Randomness in Swarm-Based Search. Mathematics. https://doi.org/10.3390/math7090828

Weiss, G. (Ed.). (2013). Multiagent systems (Second edition). The MIT Press.

Weld, D. S., Wu, F., Adar, E., Amershi, S., Fogarty, J., Hoffmann, R., Patel, K., & Skinner, M. (2008). Intelligence in wikipedia. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 08) Senior Papers Track, 1609–1614.

Wibawa, A. P., Kurniawan, A. C., Prawidya Murti, D. M., Adiperkasa, R. P., Putra, S. M., Kurniawan, S. A., & Nugraha, Y. R. (2019). Naïve Bayes Classifier for Journal Quartile Classification. International Journal of Recent Contributions From Engineering Science & It (Ijes). https://doi.org/10.3991/ijes.v7i2.10659

Wicaksono, D. A., & Arumsari, P. D. (2023). PERANAN INTERAKSI PENGHINDARAN PAJAK DALAM OPTIMALISASI NILAI PERUSAHAAN BERDASAR PADA KEBIJAKAN DEVIDEN. Equilibria Pendidikan: Jurnal Ilmiah Pendidikan Ekonomi, 8(1), 1–11.

Wijaya Jofanda, A. N., & Yasin, M. (2021). Design of Checkers Game Using Alpha-Beta Pruning Algorithm. Intensif Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi. https://doi.org/10.29407/intensif.v5i2.15863

Wooldridge, M. (2002). Intelligent Agents: The Key Concepts. https://doi.org/10.1007/3-540-45982-0_1

Wooldridge, M., & Jennings, N. R. (1995). Intelligent Agents: Theory and Practice. The Knowledge Engineering Review. https://doi.org/10.1017/s0269888900008122

Wu, J., & C. Shang, S. S. (2020). Managing Uncertainty in AI-Enabled Decision Making and Achieving Sustainability. Sustainability. https://doi.org/10.3390/su12218758

Wu, T., Qi, G., Li, C., & Wang, M. (2018). A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications. Sustainability. https://doi.org/10.3390/su10093245

Xu, B., Kuz’minykh, V. A., Zhu, S., Yu, J., Zhang, M., Li, S., & Lande, D. (2023). Research on Library Construction Driven by Multi-Technology Integration. https://doi.org/10.1117/12.2660850

Xu, Y., Ahokangas, P., Turunen, M., Mäntymäki, M., & Heikkilä, J. (2019). Platform-Based Business Models: Insights From an Emerging Ai-Enabled Smart Building Ecosystem. Electronics. https://doi.org/10.3390/electronics8101150

Xue, L. (2022). Application of Artificial Intelligence in Digital Games Based on Mathematical Statistics. Mobile Information Systems. https://doi.org/10.1155/2022/7145588

Yakan, S. A. (2022). Analysis of Development of Artificial Intelligence in the Game Industry. International Journal of Cyber and It Service Management. https://doi.org/10.34306/ijcitsm.v2i2.100

Yannakakis, G. N., & Togelius, J. (2015). A Panorama of Artificial and Computational Intelligence in Games. Ieee Transactions on Computational Intelligence and Ai in Games. https://doi.org/10.1109/tciaig.2014.2339221

Yasin, V., Zarlis, M., & Nasution, M. K. (2018). Filsafat Logika Dan Ontologi Ilmu Komputer. JISAMAR (Journal of Information System, Applied, Management, Accounting and Research), 2(2), 68–75.

Yiğitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights From a Systematic Review of the Literature. Energies. https://doi.org/10.3390/en13061473

Yiğitcanlar, T., Mehmood, R., & Corchado, J. M. (2021). Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures. Sustainability. https://doi.org/10.3390/su13168952

Yoon, D.-M., & Kim, K. J. (2015). Challenges and Opportunities in Game Artificial Intelligence Education Using Angry Birds. Ieee Access. https://doi.org/10.1109/access.2015.2442680

Yuan, X., Shen, X., Chen, Y., Wang, M., Mong Goh, R. S., Liu, Y., & Fu, H. (2023). EvidenceCap: Towards Trustworthy Medical Image Segmentation via Evidential Identity Cap. https://doi.org/10.21203/rs.3.rs-2558155/v1

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

Zhou, Y., & Zeng, J. (2015). Massively Parallel A* Search on a GPU. Proceedings of the Aaai Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v29i1.9367

Zlotnick, J. (1972). Bayes’ theorem for intelligence analysis. Studies in Intelligence, 16(2), 43–52.

Ανθόπουλος, Λ., Janssen, M., & Weerakkody, V. (2015). Comparing Smart Cities With Different Modeling Approaches. https://doi.org/10.1145/2740908.2743920

ai_heny

Published

January 14, 2024

Categories

License

License